ODE
\[ 2 y'(x)^4-y(x) y'(x)-2=0 \] ODE Classification
[_quadrature]
Book solution method
Missing Variables ODE, Independent variable missing, Solve for \(y\)
Mathematica ✗
cpu = 600.002 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.14 (sec), leaf count = 50
\[ \left \{ x+{\frac { \left ( y \left ( x \right ) \right ) ^{2}}{4}}-2\, \left ( {\it RootOf} \left ( 2\,{{\it \_Z}}^{4}-y \left ( x \right ) {\it \_Z}-2 \right ) \right ) ^{2}-{\frac {y \left ( x \right ) \left ( {\it RootOf} \left ( 2\,{{\it \_Z}}^{4}-y \left ( x \right ) {\it \_Z}-2 \right ) \right ) ^{3}}{2}}-{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[-2 - y[x]*y'[x] + 2*y'[x]^4 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(2*diff(y(x),x)^4-y(x)*diff(y(x),x)-2 = 0, y(x),'implicit')
Maple raw output
x+1/4*y(x)^2-2*RootOf(2*_Z^4-y(x)*_Z-2)^2-1/2*y(x)*RootOf(2*_Z^4-y(x)*_Z-2)^3-_C
1 = 0