4.23.40 \(y'(x) \left (a+x \sqrt {y'(x)^2+1}\right )=y(x) \sqrt {y'(x)^2+1}\)

ODE
\[ y'(x) \left (a+x \sqrt {y'(x)^2+1}\right )=y(x) \sqrt {y'(x)^2+1} \] ODE Classification

[_Clairaut]

Book solution method
Clairaut’s equation and related types, \(f(y-x y', y')=0\)

Mathematica
cpu = 600.575 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.029 (sec), leaf count = 18

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,x+{{\it \_C1}\,a{\frac {1}{\sqrt {{{\it \_C1}}^{2}+1}}}} \right \} \] Mathematica raw input

DSolve[y'[x]*(a + x*Sqrt[1 + y'[x]^2]) == y[x]*Sqrt[1 + y'[x]^2],y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(diff(y(x),x)*(a+x*(1+diff(y(x),x)^2)^(1/2)) = y(x)*(1+diff(y(x),x)^2)^(1/2), y(x),'implicit')

Maple raw output

y(x) = _C1*x+_C1*a/(_C1^2+1)^(1/2)