4.3.15 x(sin(2y(x))x2cos2(y(x)))+y(x)=0

ODE
x(sin(2y(x))x2cos2(y(x)))+y(x)=0 ODE Classification

[`y=_G(x,y')`]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.260147 (sec), leaf count = 55

{{y(x)tan1(12(8c1ex2+x21))},{y(x)tan1(4c1ex2x22+12)}}

Maple
cpu = 1.17 (sec), leaf count = 23

{ln(x2+2tan(y(x))+1)+x2_C1=0} Mathematica raw input

DSolve[x*(-(x^2*Cos[y[x]]^2) + Sin[2*y[x]]) + y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> ArcTan[(-1 + x^2 - (8*C[1])/E^x^2)/2]}, {y[x] -> -ArcTan[1/2 - x^2/2 +
 (4*C[1])/E^x^2]}}

Maple raw input

dsolve(diff(y(x),x)+x*(sin(2*y(x))-x^2*cos(y(x))^2) = 0, y(x),'implicit')

Maple raw output

ln(-x^2+2*tan(y(x))+1)+x^2-_C1 = 0