4.24.16 \(f\left (y(x),y'(x)\right )=0\)

ODE
\[ f\left (y(x),y'(x)\right )=0 \] ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Independent variable missing

Mathematica
cpu = 1.08851 (sec), leaf count = 27

\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}} \frac {1}{\text {InverseFunction}[f,2,2][K[1],0]} \, dK[1]\& \right ]\left [c_1+x\right ]\right \}\right \}\]

Maple
cpu = 0.012 (sec), leaf count = 28

\[ \left \{ x-\int ^{y \left ( x \right ) }\! \left ( {\it RootOf} \left ( f \left ( {\it \_a},{\it \_Z} \right ) \right ) \right ) ^{-1}{d{\it \_a}}-{\it \_C1}=0,y \left ( x \right ) ={\it RootOf} \left ( f \left ( {\it \_Z},0 \right ) \right ) \right \} \] Mathematica raw input

DSolve[f[y[x], y'[x]] == 0,y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[Integrate[InverseFunction[f, 2, 2][K[1], 0]^(-1), {K[1
], 1, #1}] & ][x + C[1]]}}

Maple raw input

dsolve(f(y(x),diff(y(x),x)) = 0, y(x),'implicit')

Maple raw output

y(x) = RootOf(f(_Z,0)), x-Intat(1/RootOf(f(_a,_Z)),_a = y(x))-_C1 = 0