4.3.17 \(y'(x)=\cot (x) \cot (y(x))\)

ODE
\[ y'(x)=\cot (x) \cot (y(x)) \] ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.0512485 (sec), leaf count = 29

\[\left \{\left \{y(x)\to -\cos ^{-1}\left (-\frac {1}{2} c_1 \csc (x)\right )\right \},\left \{y(x)\to \cos ^{-1}\left (-\frac {1}{2} c_1 \csc (x)\right )\right \}\right \}\]

Maple
cpu = 0.005 (sec), leaf count = 12

\[ \left \{ \ln \left ( \sin \left ( x \right ) \right ) +\ln \left ( \cos \left ( y \left ( x \right ) \right ) \right ) +{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[y'[x] == Cot[x]*Cot[y[x]],y[x],x]

Mathematica raw output

{{y[x] -> -ArcCos[-(C[1]*Csc[x])/2]}, {y[x] -> ArcCos[-(C[1]*Csc[x])/2]}}

Maple raw input

dsolve(diff(y(x),x) = cot(x)*cot(y(x)), y(x),'implicit')

Maple raw output

ln(sin(x))+ln(cos(y(x)))+_C1 = 0