4.24.26 \(y''(x)=x+\sin (x)\)

ODE
\[ y''(x)=x+\sin (x) \] ODE Classification

[[_2nd_order, _quadrature]]

Book solution method
TO DO

Mathematica
cpu = 0.0219306 (sec), leaf count = 23

\[\left \{\left \{y(x)\to c_2 x+c_1+\frac {x^3}{6}-\sin (x)\right \}\right \}\]

Maple
cpu = 0.007 (sec), leaf count = 18

\[ \left \{ y \left ( x \right ) ={\frac {{x}^{3}}{6}}-\sin \left ( x \right ) +{\it \_C1}\,x+{\it \_C2} \right \} \] Mathematica raw input

DSolve[y''[x] == x + Sin[x],y[x],x]

Mathematica raw output

{{y[x] -> x^3/6 + C[1] + x*C[2] - Sin[x]}}

Maple raw input

dsolve(diff(diff(y(x),x),x) = x+sin(x), y(x),'implicit')

Maple raw output

y(x) = 1/6*x^3-sin(x)+_C1*x+_C2