ODE
\[ y''(x)=x+\sin (x) \] ODE Classification
[[_2nd_order, _quadrature]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0219306 (sec), leaf count = 23
\[\left \{\left \{y(x)\to c_2 x+c_1+\frac {x^3}{6}-\sin (x)\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 18
\[ \left \{ y \left ( x \right ) ={\frac {{x}^{3}}{6}}-\sin \left ( x \right ) +{\it \_C1}\,x+{\it \_C2} \right \} \] Mathematica raw input
DSolve[y''[x] == x + Sin[x],y[x],x]
Mathematica raw output
{{y[x] -> x^3/6 + C[1] + x*C[2] - Sin[x]}}
Maple raw input
dsolve(diff(diff(y(x),x),x) = x+sin(x), y(x),'implicit')
Maple raw output
y(x) = 1/6*x^3-sin(x)+_C1*x+_C2