4.24.31 \(y''(x)-y(x)=0\)

ODE
\[ y''(x)-y(x)=0 \] ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.00240598 (sec), leaf count = 20

\[\left \{\left \{y(x)\to c_1 e^x+c_2 e^{-x}\right \}\right \}\]

Maple
cpu = 0.009 (sec), leaf count = 15

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-x}}+{\it \_C2}\,{{\rm e}^{x}} \right \} \] Mathematica raw input

DSolve[-y[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^x*C[1] + C[2]/E^x}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp(-x)+_C2*exp(x)