4.24.35 \(y''(x)+y(x)=\sec (x)\)

ODE
\[ y''(x)+y(x)=\sec (x) \] ODE Classification

[[_2nd_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0170495 (sec), leaf count = 22

\[\left \{\left \{y(x)\to \left (c_2+x\right ) \sin (x)+\cos (x) \left (c_1+\log (\cos (x))\right )\right \}\right \}\]

Maple
cpu = 0.038 (sec), leaf count = 24

\[ \left \{ y \left ( x \right ) =-\ln \left ( \left ( \cos \left ( x \right ) \right ) ^{-1} \right ) \cos \left ( x \right ) +\cos \left ( x \right ) {\it \_C1}+\sin \left ( x \right ) \left ( x+{\it \_C2} \right ) \right \} \] Mathematica raw input

DSolve[y[x] + y''[x] == Sec[x],y[x],x]

Mathematica raw output

{{y[x] -> Cos[x]*(C[1] + Log[Cos[x]]) + (x + C[2])*Sin[x]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+y(x) = sec(x), y(x),'implicit')

Maple raw output

y(x) = -ln(1/cos(x))*cos(x)+cos(x)*_C1+sin(x)*(x+_C2)