4.3.19 y(x)=sin(x)(csc(y(x))cot(y(x)))

ODE
y(x)=sin(x)(csc(y(x))cot(y(x))) ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.112868 (sec), leaf count = 21

{{y(x)2sin1(e14(c12cos(x)))}}

Maple
cpu = 0.042 (sec), leaf count = 15

{_C1+cos(x)+ln(1cos(y(x)))=0} Mathematica raw input

DSolve[y'[x] == (-Cot[y[x]] + Csc[y[x]])*Sin[x],y[x],x]

Mathematica raw output

{{y[x] -> 2*ArcSin[E^((C[1] - 2*Cos[x])/4)]}}

Maple raw input

dsolve(diff(y(x),x) = sin(x)*(csc(y(x))-cot(y(x))), y(x),'implicit')

Maple raw output

_C1+cos(x)+ln(1-cos(y(x))) = 0