ODE
\[ \left (a-x^2\right ) y(x)+y''(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0050641 (sec), leaf count = 47
\[\left \{\left \{y(x)\to c_1 D_{\frac {a-1}{2}}\left (\sqrt {2} x\right )+c_2 D_{\frac {1}{2} (-a-1)}\left (i \sqrt {2} x\right )\right \}\right \}\]
Maple ✓
cpu = 0.125 (sec), leaf count = 29
\[ \left \{ y \left ( x \right ) ={1 \left ( {\it \_C2}\,{{\sl W}_{{\frac {a}{4}},\,{\frac {1}{4}}}\left ({x}^{2}\right )}+{\it \_C1}\,{{\sl M}_{{\frac {a}{4}},\,{\frac {1}{4}}}\left ({x}^{2}\right )} \right ) {\frac {1}{\sqrt {x}}}} \right \} \] Mathematica raw input
DSolve[(a - x^2)*y[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[2]*ParabolicCylinderD[(-1 - a)/2, I*Sqrt[2]*x] + C[1]*ParabolicCylin
derD[(-1 + a)/2, Sqrt[2]*x]}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+(-x^2+a)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = (_C2*WhittakerW(1/4*a,1/4,x^2)+_C1*WhittakerM(1/4*a,1/4,x^2))/x^(1/2)