ODE
\[ y''(x)+2 y'(x)+y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00649604 (sec), leaf count = 18
\[\left \{\left \{y(x)\to e^{-x} \left (c_2 x+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 14
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-x}} \left ( {\it \_C2}\,x+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[y[x] + 2*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + x*C[2])/E^x}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-x)*(_C2*x+_C1)