ODE
\[ y''(x)+2 y'(x)+3 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00548936 (sec), leaf count = 34
\[\left \{\left \{y(x)\to e^{-x} \left (c_1 \sin \left (\sqrt {2} x\right )+c_2 \cos \left (\sqrt {2} x\right )\right )\right \}\right \}\]
Maple ✓
cpu = 0.005 (sec), leaf count = 26
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-x}} \left ( \sin \left ( \sqrt {2}x \right ) {\it \_C1}+\cos \left ( \sqrt {2}x \right ) {\it \_C2} \right ) \right \} \] Mathematica raw input
DSolve[3*y[x] + 2*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[2]*Cos[Sqrt[2]*x] + C[1]*Sin[Sqrt[2]*x])/E^x}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)+3*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-x)*(sin(2^(1/2)*x)*_C1+cos(2^(1/2)*x)*_C2)