ODE
\[ y''(x)+3 y'(x)+2 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00445741 (sec), leaf count = 20
\[\left \{\left \{y(x)\to e^{-2 x} \left (c_2 e^x+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.009 (sec), leaf count = 17
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-x}}+{\it \_C2}\,{{\rm e}^{-2\,x}} \right \} \] Mathematica raw input
DSolve[2*y[x] + 3*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + E^x*C[2])/E^(2*x)}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-x)+_C2*exp(-2*x)