4.26.6 \(y''(x)-4 y'(x)+4 y(x)=0\)

ODE
\[ y''(x)-4 y'(x)+4 y(x)=0 \] ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.00437453 (sec), leaf count = 18

\[\left \{\left \{y(x)\to e^{2 x} \left (c_2 x+c_1\right )\right \}\right \}\]

Maple
cpu = 0.007 (sec), leaf count = 14

\[ \left \{ y \left ( x \right ) ={{\rm e}^{2\,x}} \left ( {\it \_C2}\,x+{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[4*y[x] - 4*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^(2*x)*(C[1] + x*C[2])}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(2*x)*(_C2*x+_C1)