ODE
\[ y''(x)+4 y'(x)+5 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00449196 (sec), leaf count = 22
\[\left \{\left \{y(x)\to e^{-2 x} \left (c_1 \sin (x)+c_2 \cos (x)\right )\right \}\right \}\]
Maple ✓
cpu = 0.005 (sec), leaf count = 18
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-2\,x}} \left ( \sin \left ( x \right ) {\it \_C1}+\cos \left ( x \right ) {\it \_C2} \right ) \right \} \] Mathematica raw input
DSolve[5*y[x] + 4*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[2]*Cos[x] + C[1]*Sin[x])/E^(2*x)}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)+5*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-2*x)*(sin(x)*_C1+cos(x)*_C2)