4.3.28 \(y'(x)=\tan (y(x)) (\cos (x) \sin (y(x))+1)\)

ODE
\[ y'(x)=\tan (y(x)) (\cos (x) \sin (y(x))+1) \] ODE Classification

[`y=_G(x,y')`]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.552714 (sec), leaf count = 53

\[\left \{\left \{y(x)\to \csc ^{-1}\left (\frac {1}{2} \left (-2 c_1 e^{-x}-\sin (x)-\cos (x)\right )\right )\right \},\left \{y(x)\to -\csc ^{-1}\left (\frac {1}{2} \left (2 c_1 e^{-x}+\sin (x)+\cos (x)\right )\right )\right \}\right \}\]

Maple
cpu = 4.932 (sec), leaf count = 0 , could not solve

dsolve(diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x)), y(x),'implicit')

Mathematica raw input

DSolve[y'[x] == (1 + Cos[x]*Sin[y[x]])*Tan[y[x]],y[x],x]

Mathematica raw output

{{y[x] -> ArcCsc[((-2*C[1])/E^x - Cos[x] - Sin[x])/2]}, {y[x] -> -ArcCsc[((2*C[1
])/E^x + Cos[x] + Sin[x])/2]}}

Maple raw input

dsolve(diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x)), y(x),'implicit')

Maple raw output

dsolve(diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x)), y(x),'implicit')