4.27.20 \(a y(x) \tan ^2(x)+y''(x)-2 \cot (2 x) y'(x)=0\)

ODE
\[ a y(x) \tan ^2(x)+y''(x)-2 \cot (2 x) y'(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.791327 (sec), leaf count = 42

\[\left \{\left \{y(x)\to \cos ^{1-\sqrt {1-a}}(x) \left (c_2 \cos ^{2 \sqrt {1-a}}(x)+c_1\right )\right \}\right \}\]

Maple
cpu = 0.276 (sec), leaf count = 35

\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( \cos \left ( x \right ) \right ) ^{1+\sqrt {1-a}}+{\it \_C2}\, \left ( \cos \left ( x \right ) \right ) ^{1-\sqrt {1-a}} \right \} \] Mathematica raw input

DSolve[a*Tan[x]^2*y[x] - 2*Cot[2*x]*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> Cos[x]^(1 - Sqrt[1 - a])*(C[1] + C[2]*Cos[x]^(2*Sqrt[1 - a]))}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-2*cot(2*x)*diff(y(x),x)+a*y(x)*tan(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*cos(x)^(1+(1-a)^(1/2))+_C2*cos(x)^(1-(1-a)^(1/2))