4.27.42 \(y''(x)-\left (2 e^x+1\right ) y'(x)+e^{2 x} y(x)=0\)

ODE
\[ y''(x)-\left (2 e^x+1\right ) y'(x)+e^{2 x} y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0144557 (sec), leaf count = 20

\[\left \{\left \{y(x)\to e^{e^x} \left (c_2 e^x+c_1\right )\right \}\right \}\]

Maple
cpu = 0.076 (sec), leaf count = 25

\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {x}{2}}+{{\rm e}^{x}}}} \left ( \sinh \left ( {\frac {x}{2}} \right ) {\it \_C1}+\cosh \left ( {\frac {x}{2}} \right ) {\it \_C2} \right ) \right \} \] Mathematica raw input

DSolve[E^(2*x)*y[x] - (1 + 2*E^x)*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^E^x*(C[1] + E^x*C[2])}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-(1+2*exp(x))*diff(y(x),x)+exp(2*x)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(1/2*x+exp(x))*(sinh(1/2*x)*_C1+cosh(1/2*x)*_C2)