4.28.5 \(x y''(x)+y'(x)=0\)

ODE
\[ x y''(x)+y'(x)=0 \] ODE Classification

[[_2nd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.00525641 (sec), leaf count = 13

\[\left \{\left \{y(x)\to c_1 \log (x)+c_2\right \}\right \}\]

Maple
cpu = 0.007 (sec), leaf count = 10

\[ \left \{ y \left ( x \right ) ={\it \_C2}\,\ln \left ( x \right ) +{\it \_C1} \right \} \] Mathematica raw input

DSolve[y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[2] + C[1]*Log[x]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)+diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C2*ln(x)+_C1