4.28.27 \(x y''(x)-(x+1) y'(x)+y(x)=0\)

ODE
\[ x y''(x)-(x+1) y'(x)+y(x)=0 \] ODE Classification

[_Laguerre]

Book solution method
TO DO

Mathematica
cpu = 0.660348 (sec), leaf count = 19

\[\left \{\left \{y(x)\to c_1 e^x-c_2 (x+1)\right \}\right \}\]

Maple
cpu = 0.027 (sec), leaf count = 13

\[ \left \{ y \left ( x \right ) ={\it \_C2}\,{{\rm e}^{x}}+{\it \_C1}\,x+{\it \_C1} \right \} \] Mathematica raw input

DSolve[y[x] - (1 + x)*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^x*C[1] - (1 + x)*C[2]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C2*exp(x)+_C1*x+_C1