ODE
\[ -2 (a+b x) y'(x)+y(x) (2 a+b x)+x y''(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0247 (sec), leaf count = 117
\[\left \{\left \{y(x)\to x^{2 a+1} e^{b x-\sqrt {b-1} \sqrt {b} x} \left (c_1 U\left (\sqrt {\frac {b-1}{b}} a+a+1,2 a+2,2 \sqrt {b-1} \sqrt {b} x\right )+c_2 L_{-a \left (\sqrt {\frac {b-1}{b}}+1\right )-1}^{2 a+1}\left (2 \sqrt {b-1} \sqrt {b} x\right )\right )\right \}\right \}\]
Maple ✓
cpu = 0.198 (sec), leaf count = 106
\[ \left \{ y \left ( x \right ) ={{\rm e}^{x \left ( b-\sqrt {b}\sqrt {-1+b} \right ) }}{x}^{2\,a+1} \left ( {{\sl M}\left ({1 \left ( \sqrt {-1+b}a+a\sqrt {b}+\sqrt {b} \right ) {\frac {1}{\sqrt {b}}}},\,2\,a+2,\,2\,\sqrt {b}\sqrt {-1+b}x\right )}{\it \_C1}+{{\sl U}\left ({1 \left ( \sqrt {-1+b}a+a\sqrt {b}+\sqrt {b} \right ) {\frac {1}{\sqrt {b}}}},\,2\,a+2,\,2\,\sqrt {b}\sqrt {-1+b}x\right )}{\it \_C2} \right ) \right \} \] Mathematica raw input
DSolve[(2*a + b*x)*y[x] - 2*(a + b*x)*y'[x] + x*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> E^(-(Sqrt[-1 + b]*Sqrt[b]*x) + b*x)*x^(1 + 2*a)*(C[1]*HypergeometricU[
1 + a + a*Sqrt[(-1 + b)/b], 2 + 2*a, 2*Sqrt[-1 + b]*Sqrt[b]*x] + C[2]*LaguerreL[
-1 - a*(1 + Sqrt[(-1 + b)/b]), 1 + 2*a, 2*Sqrt[-1 + b]*Sqrt[b]*x])}}
Maple raw input
dsolve(x*diff(diff(y(x),x),x)-2*(b*x+a)*diff(y(x),x)+(b*x+2*a)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(x*(b-b^(1/2)*(-1+b)^(1/2)))*x^(2*a+1)*(KummerM(((-1+b)^(1/2)*a+a*b^(1
/2)+b^(1/2))/b^(1/2),2*a+2,2*b^(1/2)*(-1+b)^(1/2)*x)*_C1+KummerU(((-1+b)^(1/2)*a
+a*b^(1/2)+b^(1/2))/b^(1/2),2*a+2,2*b^(1/2)*(-1+b)^(1/2)*x)*_C2)