ODE
\[ (a-x) y''(x)-2 y'(x)=0 \] ODE Classification
[[_2nd_order, _missing_y]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00789502 (sec), leaf count = 18
\[\left \{\left \{y(x)\to \frac {c_1}{a-x}+c_2\right \}\right \}\]
Maple ✓
cpu = 0.01 (sec), leaf count = 15
\[ \left \{ y \left ( x \right ) ={\it \_C1}+{\frac {{\it \_C2}}{x-a}} \right \} \] Mathematica raw input
DSolve[-2*y'[x] + (a - x)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[1]/(a - x) + C[2]}}
Maple raw input
dsolve((a-x)*diff(diff(y(x),x),x)-2*diff(y(x),x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1+_C2/(x-a)