[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.127287 (sec), leaf count = 307
Maple ✓
cpu = 0.216 (sec), leaf count = 248
DSolve[(a2 + b2*x)*y[x] + (a1 + b1*x)*y'[x] + (a0 + b0*x)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> ((a0 + b0*x)^((-(a1*b0) + b0^2 + a0*b1)/b0^2)*(C[1]*HypergeometricU[(-
2*a2*b0^2 - a0*b1^2 + 2*a0*b0*b2 + 2*b0^2*Sqrt[b1^2 - 4*b0*b2] + a0*b1*Sqrt[b1^2
- 4*b0*b2] + a1*b0*(b1 - Sqrt[b1^2 - 4*b0*b2]))/(2*b0^2*Sqrt[b1^2 - 4*b0*b2]),
2 - a1/b0 + (a0*b1)/b0^2, (Sqrt[b1^2 - 4*b0*b2]*(a0 + b0*x))/b0^2] + C[2]*Laguer
reL[(2*a2*b0^2 + a0*b1^2 - 2*a0*b0*b2 - 2*b0^2*Sqrt[b1^2 - 4*b0*b2] - a0*b1*Sqrt
[b1^2 - 4*b0*b2] + a1*b0*(-b1 + Sqrt[b1^2 - 4*b0*b2]))/(2*b0^2*Sqrt[b1^2 - 4*b0*
b2]), (-(a1*b0) + b0^2 + a0*b1)/b0^2, (Sqrt[b1^2 - 4*b0*b2]*(a0 + b0*x))/b0^2]))
/E^(((b1 + Sqrt[b1^2 - 4*b0*b2])*x)/(2*b0))}}
Maple raw input
dsolve((b0*x+a0)*diff(diff(y(x),x),x)+(b1*x+a1)*diff(y(x),x)+(b2*x+a2)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-1/2/b0*((-4*b0*b2+b1^2)^(1/2)+b1)*x)*(b0*x+a0)^(1/b0^2*(a0*b1-a1*b0+
b0^2))*(KummerU(1/2*((a0*b1-a1*b0+2*b0^2)*(-4*b0*b2+b1^2)^(1/2)-2*a2*b0^2+(2*a0*
b2+a1*b1)*b0-a0*b1^2)/(-4*b0*b2+b1^2)^(1/2)/b0^2,(a0*b1-a1*b0+2*b0^2)/b0^2,1/b0^
2*(-4*b0*b2+b1^2)^(1/2)*(b0*x+a0))*_C2+KummerM(1/2*((a0*b1-a1*b0+2*b0^2)*(-4*b0*
b2+b1^2)^(1/2)-2*a2*b0^2+(2*a0*b2+a1*b1)*b0-a0*b1^2)/(-4*b0*b2+b1^2)^(1/2)/b0^2,
(a0*b1-a1*b0+2*b0^2)/b0^2,1/b0^2*(-4*b0*b2+b1^2)^(1/2)*(b0*x+a0))*_C1)