ODE
\[ y(x) (a+b x)+x^2 y''(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0528246 (sec), leaf count = 95
\[\left \{\left \{y(x)\to \sqrt {b} \sqrt {x} \left (c_1 \Gamma \left (1-\sqrt {1-4 a}\right ) J_{-\sqrt {1-4 a}}\left (2 \sqrt {b} \sqrt {x}\right )+c_2 \Gamma \left (\sqrt {1-4 a}+1\right ) J_{\sqrt {1-4 a}}\left (2 \sqrt {b} \sqrt {x}\right )\right )\right \}\right \}\]
Maple ✓
cpu = 0.016 (sec), leaf count = 45
\[ \left \{ y \left ( x \right ) =\sqrt {x} \left ( {{\sl Y}_{\sqrt {1-4\,a}}\left (2\,\sqrt {b}\sqrt {x}\right )}{\it \_C2}+{{\sl J}_{\sqrt {1-4\,a}}\left (2\,\sqrt {b}\sqrt {x}\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[(a + b*x)*y[x] + x^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> Sqrt[b]*Sqrt[x]*(BesselJ[-Sqrt[1 - 4*a], 2*Sqrt[b]*Sqrt[x]]*C[1]*Gamma
[1 - Sqrt[1 - 4*a]] + BesselJ[Sqrt[1 - 4*a], 2*Sqrt[b]*Sqrt[x]]*C[2]*Gamma[1 + S
qrt[1 - 4*a]])}}
Maple raw input
dsolve(x^2*diff(diff(y(x),x),x)+(b*x+a)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = x^(1/2)*(BesselY((1-4*a)^(1/2),2*b^(1/2)*x^(1/2))*_C2+BesselJ((1-4*a)^(1/
2),2*b^(1/2)*x^(1/2))*_C1)