ODE
\[ x^2 y''(x)-x y'(x)+y(x)=0 \] ODE Classification
[[_Emden, _Fowler]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00805277 (sec), leaf count = 15
\[\left \{\left \{y(x)\to x \left (c_2 \log (x)+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.006 (sec), leaf count = 12
\[ \left \{ y \left ( x \right ) =x \left ( \ln \left ( x \right ) {\it \_C2}+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[y[x] - x*y'[x] + x^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> x*(C[1] + C[2]*Log[x])}}
Maple raw input
dsolve(x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = x*(ln(x)*_C2+_C1)