4.29.42 \(x^2 y''(x)+x y'(x)+y(x)=\log (x)\)

ODE
\[ x^2 y''(x)+x y'(x)+y(x)=\log (x) \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0206333 (sec), leaf count = 20

\[\left \{\left \{y(x)\to c_2 \sin (\log (x))+c_1 \cos (\log (x))+\log (x)\right \}\right \}\]

Maple
cpu = 0.023 (sec), leaf count = 17

\[ \left \{ y \left ( x \right ) =\sin \left ( \ln \left ( x \right ) \right ) {\it \_C2}+\cos \left ( \ln \left ( x \right ) \right ) {\it \_C1}+\ln \left ( x \right ) \right \} \] Mathematica raw input

DSolve[y[x] + x*y'[x] + x^2*y''[x] == Log[x],y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Cos[Log[x]] + Log[x] + C[2]*Sin[Log[x]]}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = ln(x), y(x),'implicit')

Maple raw output

y(x) = sin(ln(x))*_C2+cos(ln(x))*_C1+ln(x)