4.30.10 \(x^2 y''(x)-2 x y'(x)+2 y(x)=2 x \log (x)\)

ODE
\[ x^2 y''(x)-2 x y'(x)+2 y(x)=2 x \log (x) \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0150336 (sec), leaf count = 25

\[\left \{\left \{y(x)\to x \left (c_2 x+c_1-\log ^2(x)-2 \log (x)-2\right )\right \}\right \}\]

Maple
cpu = 0.022 (sec), leaf count = 22

\[ \left \{ y \left ( x \right ) =x \left ( {\it \_C2}\,x- \left ( \ln \left ( x \right ) \right ) ^{2}+{\it \_C1}-2\,\ln \left ( x \right ) -2 \right ) \right \} \] Mathematica raw input

DSolve[2*y[x] - 2*x*y'[x] + x^2*y''[x] == 2*x*Log[x],y[x],x]

Mathematica raw output

{{y[x] -> x*(-2 + C[1] + x*C[2] - 2*Log[x] - Log[x]^2)}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 2*x*ln(x), y(x),'implicit')

Maple raw output

y(x) = x*(_C2*x-ln(x)^2+_C1-2*ln(x)-2)