4.30.33 \(x^2 y''(x)-7 x y'(x)+16 y(x)=0\)

ODE
\[ x^2 y''(x)-7 x y'(x)+16 y(x)=0 \] ODE Classification

[[_Emden, _Fowler]]

Book solution method
TO DO

Mathematica
cpu = 0.00754879 (sec), leaf count = 18

\[\left \{\left \{y(x)\to x^4 \left (4 c_2 \log (x)+c_1\right )\right \}\right \}\]

Maple
cpu = 0.009 (sec), leaf count = 14

\[ \left \{ y \left ( x \right ) ={x}^{4} \left ( \ln \left ( x \right ) {\it \_C2}+{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[16*y[x] - 7*x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x^4*(C[1] + 4*C[2]*Log[x])}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)-7*x*diff(y(x),x)+16*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^4*(ln(x)*_C2+_C1)