4.30.36 \(\text {a1} x y'(x)+y(x) (\text {a2}+\text {b2} x)+x^2 y''(x)=0\)

ODE
\[ \text {a1} x y'(x)+y(x) (\text {a2}+\text {b2} x)+x^2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0721095 (sec), leaf count = 131

\[\left \{\left \{y(x)\to \text {b2}^{\frac {1}{2}-\frac {\text {a1}}{2}} x^{\frac {1}{2}-\frac {\text {a1}}{2}} \left (c_1 \Gamma \left (1-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}\right ) J_{-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}}\left (2 \sqrt {\text {b2}} \sqrt {x}\right )+c_2 \Gamma \left (\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+1\right ) J_{\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}}\left (2 \sqrt {\text {b2}} \sqrt {x}\right )\right )\right \}\right \}\]

Maple
cpu = 0.023 (sec), leaf count = 61

\[ \left \{ y \left ( x \right ) ={x}^{-{\frac {{\it a1}}{2}}+{\frac {1}{2}}} \left ( {{\sl Y}_{\sqrt {{{\it a1}}^{2}-2\,{\it a1}-4\,{\it a2}+1}}\left (2\,\sqrt {{\it b2}}\sqrt {x}\right )}{\it \_C2}+{{\sl J}_{\sqrt {{{\it a1}}^{2}-2\,{\it a1}-4\,{\it a2}+1}}\left (2\,\sqrt {{\it b2}}\sqrt {x}\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[(a2 + b2*x)*y[x] + a1*x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> b2^(1/2 - a1/2)*x^(1/2 - a1/2)*(BesselJ[-Sqrt[1 - 2*a1 + a1^2 - 4*a2],
 2*Sqrt[b2]*Sqrt[x]]*C[1]*Gamma[1 - Sqrt[1 - 2*a1 + a1^2 - 4*a2]] + BesselJ[Sqrt
[1 - 2*a1 + a1^2 - 4*a2], 2*Sqrt[b2]*Sqrt[x]]*C[2]*Gamma[1 + Sqrt[1 - 2*a1 + a1^
2 - 4*a2]])}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+a1*x*diff(y(x),x)+(b2*x+a2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*a1+1/2)*(BesselY((a1^2-2*a1-4*a2+1)^(1/2),2*b2^(1/2)*x^(1/2))*_C2
+BesselJ((a1^2-2*a1-4*a2+1)^(1/2),2*b2^(1/2)*x^(1/2))*_C1)