4.30.39 \(a x y'(x)+y(x) \left (b+c x^3\right )+x^2 y''(x)=0\)

ODE
\[ a x y'(x)+y(x) \left (b+c x^3\right )+x^2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0802224 (sec), leaf count = 156

\[\left \{\left \{y(x)\to 3^{\frac {a-1}{3}} c^{\frac {1}{6}-\frac {a}{6}} x^{\frac {1}{2}-\frac {a}{2}} \left (c_1 \Gamma \left (1-\frac {1}{3} \sqrt {a^2-2 a-4 b+1}\right ) J_{-\frac {1}{3} \sqrt {a^2-2 a-4 b+1}}\left (\frac {2}{3} \sqrt {c} x^{3/2}\right )+c_2 \Gamma \left (\frac {1}{3} \sqrt {a^2-2 a-4 b+1}+1\right ) J_{\frac {1}{3} \sqrt {a^2-2 a-4 b+1}}\left (\frac {2}{3} \sqrt {c} x^{3/2}\right )\right )\right \}\right \}\]

Maple
cpu = 0.039 (sec), leaf count = 65

\[ \left \{ y \left ( x \right ) ={x}^{-{\frac {a}{2}}+{\frac {1}{2}}} \left ( {{\sl Y}_{{\frac {1}{3}\sqrt {{a}^{2}-2\,a-4\,b+1}}}\left ({\frac {2}{3}\sqrt {c}{x}^{{\frac {3}{2}}}}\right )}{\it \_C2}+{{\sl J}_{{\frac {1}{3}\sqrt {{a}^{2}-2\,a-4\,b+1}}}\left ({\frac {2}{3}\sqrt {c}{x}^{{\frac {3}{2}}}}\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[(b + c*x^3)*y[x] + a*x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> 3^((-1 + a)/3)*c^(1/6 - a/6)*x^(1/2 - a/2)*(BesselJ[-Sqrt[1 - 2*a + a^
2 - 4*b]/3, (2*Sqrt[c]*x^(3/2))/3]*C[1]*Gamma[1 - Sqrt[1 - 2*a + a^2 - 4*b]/3] +
 BesselJ[Sqrt[1 - 2*a + a^2 - 4*b]/3, (2*Sqrt[c]*x^(3/2))/3]*C[2]*Gamma[1 + Sqrt
[1 - 2*a + a^2 - 4*b]/3])}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+(c*x^3+b)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*a+1/2)*(BesselY(1/3*(a^2-2*a-4*b+1)^(1/2),2/3*c^(1/2)*x^(3/2))*_C
2+BesselJ(1/3*(a^2-2*a-4*b+1)^(1/2),2/3*c^(1/2)*x^(3/2))*_C1)