4.30.42 (a+bx)y(x)+cy(x)+x2y(x)=0

ODE
(a+bx)y(x)+cy(x)+x2y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0728397 (sec), leaf count = 243

{{y(x)ib22b4c+1+b+1a12(b22b4c+1+b1)(1x)12(b22b4c+1+b1)(c11F1(12(bb22b4c+11);1b22b4c+1;ax)+c2i2b22b4c+1ab22b4c+1(1x)b22b4c+11F1(12(b+b22b4c+11);b22b4c+1+1;ax))}}

Maple
cpu = 0.184 (sec), leaf count = 114

{y(x)=x12b22b4c+1b2+12(U(12+12b22b4c+1+b2,1+b22b4c+1,ax)_C2+M(12+12b22b4c+1+b2,1+b22b4c+1,ax)_C1)} Mathematica raw input

DSolve[c*y[x] + (a + b*x)*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(I^(1 + b - Sqrt[1 - 2*b + b^2 - 4*c])*a^((-1 + b - Sqrt[1 - 2*b + b^
2 - 4*c])/2)*(x^(-1))^((-1 + b - Sqrt[1 - 2*b + b^2 - 4*c])/2)*(C[1]*Hypergeomet
ric1F1[(-1 + b - Sqrt[1 - 2*b + b^2 - 4*c])/2, 1 - Sqrt[1 - 2*b + b^2 - 4*c], a/
x] + I^(2*Sqrt[1 - 2*b + b^2 - 4*c])*a^Sqrt[1 - 2*b + b^2 - 4*c]*(x^(-1))^Sqrt[1
 - 2*b + b^2 - 4*c]*C[2]*Hypergeometric1F1[(-1 + b + Sqrt[1 - 2*b + b^2 - 4*c])/
2, 1 + Sqrt[1 - 2*b + b^2 - 4*c], a/x]))}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+(b*x+a)*diff(y(x),x)+c*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*(b^2-2*b-4*c+1)^(1/2)-1/2*b+1/2)*(KummerU(-1/2+1/2*(b^2-2*b-4*c+1
)^(1/2)+1/2*b,1+(b^2-2*b-4*c+1)^(1/2),1/x*a)*_C2+KummerM(-1/2+1/2*(b^2-2*b-4*c+1
)^(1/2)+1/2*b,1+(b^2-2*b-4*c+1)^(1/2),1/x*a)*_C1)