ODE
\[ x (\text {a1}+\text {b1} x) y'(x)+y(x) \left (\text {a2}+\text {b2} x+\text {c2} x^2\right )+x^2 y''(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0740569 (sec), leaf count = 223
\[\left \{\left \{y(x)\to x^{\frac {1}{2} \left (\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}-\text {a1}+1\right )} e^{-\frac {1}{2} x \left (\sqrt {\text {b1}^2-4 \text {c2}}+\text {b1}\right )} \left (c_1 U\left (\frac {\sqrt {\text {b1}^2-4 \text {c2}} \left (\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+1\right )+\text {a1} \text {b1}-2 \text {b2}}{2 \sqrt {\text {b1}^2-4 \text {c2}}},\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+1,\sqrt {\text {b1}^2-4 \text {c2}} x\right )+c_2 L_{\frac {\left (\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+1\right ) \left (-\sqrt {\text {b1}^2-4 \text {c2}}\right )-\text {a1} \text {b1}+2 \text {b2}}{2 \sqrt {\text {b1}^2-4 \text {c2}}}}^{\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}}\left (x \sqrt {\text {b1}^2-4 \text {c2}}\right )\right )\right \}\right \}\]
Maple ✓
cpu = 0.266 (sec), leaf count = 110
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {{\it b1}\,x}{2}}}}{x}^{-{\frac {{\it a1}}{2}}} \left ( {{\sl W}_{-{\frac {{\it a1}\,{\it b1}-2\,{\it b2}}{2}{\frac {1}{\sqrt {{{\it b1}}^{2}-4\,{\it c2}}}}},\,{\frac {1}{2}\sqrt {{{\it a1}}^{2}-2\,{\it a1}-4\,{\it a2}+1}}}\left (\sqrt {{{\it b1}}^{2}-4\,{\it c2}}x\right )}{\it \_C2}+{{\sl M}_{-{\frac {{\it a1}\,{\it b1}-2\,{\it b2}}{2}{\frac {1}{\sqrt {{{\it b1}}^{2}-4\,{\it c2}}}}},\,{\frac {1}{2}\sqrt {{{\it a1}}^{2}-2\,{\it a1}-4\,{\it a2}+1}}}\left (\sqrt {{{\it b1}}^{2}-4\,{\it c2}}x\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[(a2 + b2*x + c2*x^2)*y[x] + x*(a1 + b1*x)*y'[x] + x^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (x^((1 - a1 + Sqrt[1 - 2*a1 + a1^2 - 4*a2])/2)*(C[1]*HypergeometricU[(
a1*b1 - 2*b2 + (1 + Sqrt[1 - 2*a1 + a1^2 - 4*a2])*Sqrt[b1^2 - 4*c2])/(2*Sqrt[b1^
2 - 4*c2]), 1 + Sqrt[1 - 2*a1 + a1^2 - 4*a2], Sqrt[b1^2 - 4*c2]*x] + C[2]*Laguer
reL[(-(a1*b1) + 2*b2 - (1 + Sqrt[1 - 2*a1 + a1^2 - 4*a2])*Sqrt[b1^2 - 4*c2])/(2*
Sqrt[b1^2 - 4*c2]), Sqrt[1 - 2*a1 + a1^2 - 4*a2], Sqrt[b1^2 - 4*c2]*x]))/E^(((b1
+ Sqrt[b1^2 - 4*c2])*x)/2)}}
Maple raw input
dsolve(x^2*diff(diff(y(x),x),x)+x*(b1*x+a1)*diff(y(x),x)+(c2*x^2+b2*x+a2)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-1/2*b1*x)*x^(-1/2*a1)*(WhittakerW(-1/2*(a1*b1-2*b2)/(b1^2-4*c2)^(1/2
),1/2*(a1^2-2*a1-4*a2+1)^(1/2),(b1^2-4*c2)^(1/2)*x)*_C2+WhittakerM(-1/2*(a1*b1-2
*b2)/(b1^2-4*c2)^(1/2),1/2*(a1^2-2*a1-4*a2+1)^(1/2),(b1^2-4*c2)^(1/2)*x)*_C1)