ODE
\[ a y(x)+x^2 y''(x)-2 x^2 \tan (x) y'(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0644282 (sec), leaf count = 50
\[\left \{\left \{y(x)\to \sqrt {x} \sec (x) \left (c_1 J_{\frac {1}{2} \sqrt {1-4 a}}(x)+c_2 Y_{\frac {1}{2} \sqrt {1-4 a}}(x)\right )\right \}\right \}\]
Maple ✓
cpu = 0.017 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) ={\frac {1}{\cos \left ( x \right ) }\sqrt {x} \left ( {{\sl Y}_{{\frac {1}{2}\sqrt {1-4\,a}}}\left (x\right )}{\it \_C2}+{{\sl J}_{{\frac {1}{2}\sqrt {1-4\,a}}}\left (x\right )}{\it \_C1} \right ) } \right \} \] Mathematica raw input
DSolve[a*y[x] - 2*x^2*Tan[x]*y'[x] + x^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> Sqrt[x]*(BesselJ[Sqrt[1 - 4*a]/2, x]*C[1] + BesselY[Sqrt[1 - 4*a]/2, x
]*C[2])*Sec[x]}}
Maple raw input
dsolve(x^2*diff(diff(y(x),x),x)-2*x^2*diff(y(x),x)*tan(x)+a*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = x^(1/2)*(BesselY(1/2*(1-4*a)^(1/2),x)*_C2+BesselJ(1/2*(1-4*a)^(1/2),x)*_C
1)/cos(x)