ODE
\[ \left (1-x^2\right ) y''(x)-x y'(x)+y(x)=0 \] ODE Classification
[[_2nd_order, _exact, _linear, _homogeneous]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0639342 (sec), leaf count = 63
\[\left \{\left \{y(x)\to c_1 \cosh \left (\frac {\sqrt {1-x^2} \sin ^{-1}(x)}{\sqrt {x^2-1}}\right )+i c_2 \sinh \left (\frac {\sqrt {1-x^2} \sin ^{-1}(x)}{\sqrt {x^2-1}}\right )\right \}\right \}\]
Maple ✓
cpu = 0.01 (sec), leaf count = 20
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,x+{\it \_C2}\,\sqrt {-1+x}\sqrt {1+x} \right \} \] Mathematica raw input
DSolve[y[x] - x*y'[x] + (1 - x^2)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[1]*Cosh[(Sqrt[1 - x^2]*ArcSin[x])/Sqrt[-1 + x^2]] + I*C[2]*Sinh[(Sqr
t[1 - x^2]*ArcSin[x])/Sqrt[-1 + x^2]]}}
Maple raw input
dsolve((-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*x+_C2*(-1+x)^(1/2)*(1+x)^(1/2)