4.31.33 \(y(x) \left (a+b x^2\right )+\left (1-x^2\right ) y''(x)-x y'(x)=0\)

ODE
\[ y(x) \left (a+b x^2\right )+\left (1-x^2\right ) y''(x)-x y'(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0175672 (sec), leaf count = 42

\[\left \{\left \{y(x)\to c_1 \text {MathieuC}\left [a+\frac {b}{2},-\frac {b}{4},\cos ^{-1}(x)\right ]+c_2 \text {MathieuS}\left [a+\frac {b}{2},-\frac {b}{4},\cos ^{-1}(x)\right ]\right \}\right \}\]

Maple
cpu = 0.178 (sec), leaf count = 31

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it MathieuC} \left ( {\frac {b}{2}}+a,-{\frac {b}{4}},\arccos \left ( x \right ) \right ) +{\it \_C2}\,{\it MathieuS} \left ( {\frac {b}{2}}+a,-{\frac {b}{4}},\arccos \left ( x \right ) \right ) \right \} \] Mathematica raw input

DSolve[(a + b*x^2)*y[x] - x*y'[x] + (1 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*MathieuC[a + b/2, -b/4, ArcCos[x]] + C[2]*MathieuS[a + b/2, -b/4,
 ArcCos[x]]}}

Maple raw input

dsolve((-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+(b*x^2+a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*MathieuC(1/2*b+a,-1/4*b,arccos(x))+_C2*MathieuS(1/2*b+a,-1/4*b,arccos
(x))