4.32.32 \((c-(a+1) x) y'(x)+n (a+n) y(x)+(1-x) x y''(x)=0\)

ODE
\[ (c-(a+1) x) y'(x)+n (a+n) y(x)+(1-x) x y''(x)=0 \] ODE Classification

[_Jacobi]

Book solution method
TO DO

Mathematica
cpu = 0.155941 (sec), leaf count = 57

\[\left \{\left \{y(x)\to (-1)^{1-c} c_2 x^{1-c} \, _2F_1(-c-n+1,a-c+n+1;2-c;x)+c_1 \, _2F_1(-n,a+n;c;x)\right \}\right \}\]

Maple
cpu = 0.063 (sec), leaf count = 51

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-n,n+a;\,c;\,x)}+{\it \_C2}\,{x}^{-c+1}{\mbox {$_2$F$_1$}(-n-c+1,n+a-c+1;\,-c+2;\,x)} \right \} \] Mathematica raw input

DSolve[n*(a + n)*y[x] + (c - (1 + a)*x)*y'[x] + (1 - x)*x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-1)^(1 - c)*x^(1 - c)*C[2]*Hypergeometric2F1[1 - c - n, 1 + a - c + n
, 2 - c, x] + C[1]*Hypergeometric2F1[-n, a + n, c, x]}}

Maple raw input

dsolve(x*(1-x)*diff(diff(y(x),x),x)+(c-(1+a)*x)*diff(y(x),x)+n*(n+a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*hypergeom([-n, n+a],[c],x)+_C2*x^(-c+1)*hypergeom([-n-c+1, n+a-c+1],[
-c+2],x)