[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.475826 (sec), leaf count = 179
Maple ✓
cpu = 0.127 (sec), leaf count = 132
DSolve[6*y[x] - 4*(a + x)*y'[x] + (a0 + x)^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> ((8*a^2 - a0^2 - 4*a*(a0 - 3*x) - 6*a0*x + 3*x^2)*(C[1] + (C[2]*((6*a
- 5*a0)/E^((4*(a - a0))/(a0 + x)) + (x - (8*(a - a0)^2*(6*a + a0 + 7*x))/(8*a^2
- a0^2 - 4*a*(a0 - 3*x) - 6*a0*x + 3*x^2))/E^((4*(a - a0))/(a0 + x)) + 12*a*ExpI
ntegralEi[(-4*(a - a0))/(a0 + x)] - 12*a0*ExpIntegralEi[(-4*(a - a0))/(a0 + x)])
)/9))/(8*a^2 - 4*a*a0 - a0^2)}}
Maple raw input
dsolve((a0+x)^2*diff(diff(y(x),x),x)-4*(a+x)*diff(y(x),x)+6*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = -32*(-1/8*a0^2+(-1/2*a-3/4*x)*a0+a^2+3/2*a*x+3/8*x^2)*(a-a0)*_C2*Ei(1,(4*
a-4*a0)/(a0+x))+8*(a0+x)*_C2*(-1/8*a0^2+(-3/4*a-x)*a0+a^2+5/4*a*x+1/8*x^2)*exp((
-4*a+4*a0)/(a0+x))+8/3*_C1*(-1/8*a0^2+(-1/2*a-3/4*x)*a0+a^2+3/2*a*x+3/8*x^2)