4.33.2 4(a+x)y(x)+(a0+x)2y(x)+6y(x)=0

ODE
4(a+x)y(x)+(a0+x)2y(x)+6y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.475826 (sec), leaf count = 179

{{y(x)(8a24a(a03x)a026a0x+3x2)(19c2(e4(aa0)a0+x(x8(aa0)2(6a+a0+7x)8a24a(a03x)a026a0x+3x2)+12aEi(4(aa0)a0+x)12a0Ei(4(aa0)a0+x)+(6a5a0)e4(aa0)a0+x)+c1)8a24aa0a02}}

Maple
cpu = 0.127 (sec), leaf count = 132

{y(x)=32(1/8a02+(a/23/4x)a0+a2+3/2ax+3/8x2)(aa0)_C2Ei(1,4a4a0a0+x)+8(a0+x)_C2(1/8a02+(3/4ax)a0+a2+5/4ax+1/8x2)e4a+4a0a0+x+8_C13(a028+(a23x4)a0+a2+3ax2+3x28)} Mathematica raw input

DSolve[6*y[x] - 4*(a + x)*y'[x] + (a0 + x)^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> ((8*a^2 - a0^2 - 4*a*(a0 - 3*x) - 6*a0*x + 3*x^2)*(C[1] + (C[2]*((6*a 
- 5*a0)/E^((4*(a - a0))/(a0 + x)) + (x - (8*(a - a0)^2*(6*a + a0 + 7*x))/(8*a^2 
- a0^2 - 4*a*(a0 - 3*x) - 6*a0*x + 3*x^2))/E^((4*(a - a0))/(a0 + x)) + 12*a*ExpI
ntegralEi[(-4*(a - a0))/(a0 + x)] - 12*a0*ExpIntegralEi[(-4*(a - a0))/(a0 + x)])
)/9))/(8*a^2 - 4*a*a0 - a0^2)}}

Maple raw input

dsolve((a0+x)^2*diff(diff(y(x),x),x)-4*(a+x)*diff(y(x),x)+6*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = -32*(-1/8*a0^2+(-1/2*a-3/4*x)*a0+a^2+3/2*a*x+3/8*x^2)*(a-a0)*_C2*Ei(1,(4*
a-4*a0)/(a0+x))+8*(a0+x)*_C2*(-1/8*a0^2+(-3/4*a-x)*a0+a^2+5/4*a*x+1/8*x^2)*exp((
-4*a+4*a0)/(a0+x))+8/3*_C1*(-1/8*a0^2+(-1/2*a-3/4*x)*a0+a^2+3/2*a*x+3/8*x^2)