ODE
\[ 2 x^2 y''(x)-(1-4 x) x y'(x)-2 (1-3 x) y(x)=x^3 (x+1) \] ODE Classification
[[_2nd_order, _linear, _nonhomogeneous]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.1709 (sec), leaf count = 88
\[\left \{\left \{y(x)\to -\frac {2 c_2 e^{-2 x} \left (e^{2 x} \left (16 x^2+4 x+3\right )-16 \sqrt {2 \pi } x^{5/2} \text {erfi}\left (\sqrt {2} \sqrt {x}\right )\right )}{15 \sqrt {x}}+c_1 e^{-2 x} x^2+\frac {1}{252} (14 x+11) x^2\right \}\right \}\]
Maple ✓
cpu = 0.085 (sec), leaf count = 61
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-2\,x}}{x}^{2}{\it \_C2}-16\,{\frac { \left ( -{x}^{5/2}\sqrt {2}\sqrt {\pi }{\it erfi} \left ( \sqrt {2}\sqrt {x} \right ) {{\rm e}^{-2\,x}}+{x}^{2}+x/4+3/16 \right ) {\it \_C1}}{\sqrt {x}}}+{\frac {{x}^{3}}{18}}+{\frac {11\,{x}^{2}}{252}} \right \} \] Mathematica raw input
DSolve[-2*(1 - 3*x)*y[x] - (1 - 4*x)*x*y'[x] + 2*x^2*y''[x] == x^3*(1 + x),y[x],x]
Mathematica raw output
{{y[x] -> (x^2*(11 + 14*x))/252 + (x^2*C[1])/E^(2*x) - (2*C[2]*(E^(2*x)*(3 + 4*x
+ 16*x^2) - 16*Sqrt[2*Pi]*x^(5/2)*Erfi[Sqrt[2]*Sqrt[x]]))/(15*E^(2*x)*Sqrt[x])}
}
Maple raw input
dsolve(2*x^2*diff(diff(y(x),x),x)-x*(1-4*x)*diff(y(x),x)-2*(1-3*x)*y(x) = x^3*(1+x), y(x),'implicit')
Maple raw output
y(x) = exp(-2*x)*x^2*_C2-16*(-x^(5/2)*2^(1/2)*Pi^(1/2)*erfi(2^(1/2)*x^(1/2))*exp
(-2*x)+x^2+1/4*x+3/16)*_C1/x^(1/2)+1/18*x^3+11/252*x^2