4.33.15 \(a y(x)+2 (1-x) x y''(x)-(1-2 x) y'(x)=0\)

ODE
\[ a y(x)+2 (1-x) x y''(x)-(1-2 x) y'(x)=0 \] ODE Classification

[_Jacobi]

Book solution method
TO DO

Mathematica
cpu = 0.0641476 (sec), leaf count = 75

\[\left \{\left \{y(x)\to (-(x-1) x)^{3/4} \left (c_1 P_{\frac {\sqrt {a+2}}{\sqrt {2}}-\frac {1}{2}}^{\frac {3}{2}}(2 x-1)+c_2 Q_{\frac {\sqrt {a+2}}{\sqrt {2}}-\frac {1}{2}}^{\frac {3}{2}}(2 x-1)\right )\right \}\right \}\]

Maple
cpu = 0.118 (sec), leaf count = 66

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-1-{\frac {1}{2}\sqrt {2\,a+4}},-1+{\frac {1}{2}\sqrt {2\,a+4}};\,-{\frac {1}{2}};\,x)}+{\it \_C2}\,{x}^{{\frac {3}{2}}}{\mbox {$_2$F$_1$}({\frac {1}{2}}-{\frac {1}{2}\sqrt {2\,a+4}},{\frac {1}{2}}+{\frac {1}{2}\sqrt {2\,a+4}};\,{\frac {5}{2}};\,x)} \right \} \] Mathematica raw input

DSolve[a*y[x] - (1 - 2*x)*y'[x] + 2*(1 - x)*x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-((-1 + x)*x))^(3/4)*(C[1]*LegendreP[-1/2 + Sqrt[2 + a]/Sqrt[2], 3/2,
 -1 + 2*x] + C[2]*LegendreQ[-1/2 + Sqrt[2 + a]/Sqrt[2], 3/2, -1 + 2*x])}}

Maple raw input

dsolve(2*x*(1-x)*diff(diff(y(x),x),x)-(1-2*x)*diff(y(x),x)+a*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*hypergeom([-1-1/2*(2*a+4)^(1/2), -1+1/2*(2*a+4)^(1/2)],[-1/2],x)+_C2*
x^(3/2)*hypergeom([1/2-1/2*(2*a+4)^(1/2), 1/2+1/2*(2*a+4)^(1/2)],[5/2],x)