4.33.24 \(y(x) \left (4 k x-4 p^2-x^2+1\right )+4 x^2 y''(x)=0\)

ODE
\[ y(x) \left (4 k x-4 p^2-x^2+1\right )+4 x^2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0164031 (sec), leaf count = 20

\[\left \{\left \{y(x)\to c_1 M_{k,p}(x)+c_2 W_{k,p}(x)\right \}\right \}\]

Maple
cpu = 0.079 (sec), leaf count = 17

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\sl M}_{k,\,p}\left (x\right )}+{\it \_C2}\,{{\sl W}_{k,\,p}\left (x\right )} \right \} \] Mathematica raw input

DSolve[(1 - 4*p^2 + 4*k*x - x^2)*y[x] + 4*x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*WhittakerM[k, p, x] + C[2]*WhittakerW[k, p, x]}}

Maple raw input

dsolve(4*x^2*diff(diff(y(x),x),x)+(4*k*x-4*p^2-x^2+1)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*WhittakerM(k,p,x)+_C2*WhittakerW(k,p,x)