4.33.31 \(4 x^2 y''(x)-2 (x+2) x y'(x)+(x+3) y(x)=0\)

ODE
\[ 4 x^2 y''(x)-2 (x+2) x y'(x)+(x+3) y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0164662 (sec), leaf count = 25

\[\left \{\left \{y(x)\to \sqrt {x} \left (2 c_2 e^{x/2}+c_1\right )\right \}\right \}\]

Maple
cpu = 0.069 (sec), leaf count = 16

\[ \left \{ y \left ( x \right ) =\sqrt {x} \left ( {{\rm e}^{{\frac {x}{2}}}}{\it \_C2}+{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[(3 + x)*y[x] - 2*x*(2 + x)*y'[x] + 4*x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> Sqrt[x]*(C[1] + 2*E^(x/2)*C[2])}}

Maple raw input

dsolve(4*x^2*diff(diff(y(x),x),x)-2*x*(2+x)*diff(y(x),x)+(3+x)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(1/2)*(exp(1/2*x)*_C2+_C1)