4.34.34 \(x \left (2-x^2\right ) y''(x)-\left (x^2+4 x+2\right ) y(x)-\left (-x^3-3 x^2+2 x+2\right ) y'(x)=0\)

ODE
\[ x \left (2-x^2\right ) y''(x)-\left (x^2+4 x+2\right ) y(x)-\left (-x^3-3 x^2+2 x+2\right ) y'(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0660435 (sec), leaf count = 21

\[\left \{\left \{y(x)\to c_1 e^x x^2+c_2 (x-1)\right \}\right \}\]

Maple
cpu = 0.047 (sec), leaf count = 17

\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( -1+x \right ) +{\it \_C2}\,{x}^{2}{{\rm e}^{x}} \right \} \] Mathematica raw input

DSolve[-((2 + 4*x + x^2)*y[x]) - (2 + 2*x - 3*x^2 - x^3)*y'[x] + x*(2 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^x*x^2*C[1] + (-1 + x)*C[2]}}

Maple raw input

dsolve(x*(-x^2+2)*diff(diff(y(x),x),x)-(-x^3-3*x^2+2*x+2)*diff(y(x),x)-(x^2+4*x+2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(-1+x)+_C2*x^2*exp(x)