4.35.20 \(2 x^2 (a+x) y'(x)+b y(x)+x^4 y''(x)=0\)

ODE
\[ 2 x^2 (a+x) y'(x)+b y(x)+x^4 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0159766 (sec), leaf count = 51

\[\left \{\left \{y(x)\to e^{\frac {a-\sqrt {a^2-b}}{x}} \left (c_1 e^{\frac {2 \sqrt {a^2-b}}{x}}+c_2\right )\right \}\right \}\]

Maple
cpu = 0.06 (sec), leaf count = 43

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{{\frac {1}{x} \left ( a-\sqrt {{a}^{2}-b} \right ) }}}+{\it \_C2}\,{{\rm e}^{{\frac {1}{x} \left ( a+\sqrt {{a}^{2}-b} \right ) }}} \right \} \] Mathematica raw input

DSolve[b*y[x] + 2*x^2*(a + x)*y'[x] + x^4*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^((a - Sqrt[a^2 - b])/x)*(E^((2*Sqrt[a^2 - b])/x)*C[1] + C[2])}}

Maple raw input

dsolve(x^4*diff(diff(y(x),x),x)+2*x^2*(a+x)*diff(y(x),x)+b*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp((a-(a^2-b)^(1/2))/x)+_C2*exp(1/x*(a+(a^2-b)^(1/2)))