ODE
\[ -y(x) \left (4 k^2-\left (1-p^2\right ) \sinh ^2(x)\right )+4 \sinh ^2(x) y''(x)+4 \sinh (x) \cosh (x) y'(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 1.51321 (sec), leaf count = 123
\[\left \{\left \{y(x)\to \frac {(-1)^{-k} \tanh (x) \tanh ^2(x)^{\frac {1}{2} (-k-1)} \left (-\text {sech}^2(x)\right )^{\frac {p+2}{4}} \left (c_1 (-1)^k \tanh ^2(x)^k \, _2F_1\left (\frac {1}{4} (2 k+p+1),\frac {1}{4} (2 k+p+3);k+1;\tanh ^2(x)\right )+c_2 \, _2F_1\left (\frac {1}{4} (-2 k+p+1),\frac {1}{4} (-2 k+p+3);1-k;\tanh ^2(x)\right )\right )}{\sqrt [4]{\text {sech}^2(x)}}\right \}\right \}\]
Maple ✓
cpu = 0.294 (sec), leaf count = 92
\[ \left \{ y \left ( x \right ) ={ \left ( \sinh \left ( x \right ) \right ) ^{k} \left ( \sinh \left ( 2\,x \right ) {\mbox {$_2$F$_1$}({\frac {3}{4}}-{\frac {p}{4}}+{\frac {k}{2}},{\frac {3}{4}}+{\frac {p}{4}}+{\frac {k}{2}};\,{\frac {3}{2}};\,{\frac {\cosh \left ( 2\,x \right ) }{2}}+{\frac {1}{2}})}{\it \_C1}+{\mbox {$_2$F$_1$}(-{\frac {p}{4}}+{\frac {1}{4}}+{\frac {k}{2}},{\frac {p}{4}}+{\frac {1}{4}}+{\frac {k}{2}};\,{\frac {1}{2}};\,{\frac {\cosh \left ( 2\,x \right ) }{2}}+{\frac {1}{2}})}\sqrt {-2+2\,\cosh \left ( 2\,x \right ) }{\it \_C2} \right ) {\frac {1}{\sqrt {-1+\cosh \left ( 2\,x \right ) }}}} \right \} \] Mathematica raw input
DSolve[-((4*k^2 - (1 - p^2)*Sinh[x]^2)*y[x]) + 4*Cosh[x]*Sinh[x]*y'[x] + 4*Sinh[x]^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> ((-Sech[x]^2)^((2 + p)/4)*Tanh[x]*(Tanh[x]^2)^((-1 - k)/2)*(C[2]*Hyper
geometric2F1[(1 - 2*k + p)/4, (3 - 2*k + p)/4, 1 - k, Tanh[x]^2] + (-1)^k*C[1]*H
ypergeometric2F1[(1 + 2*k + p)/4, (3 + 2*k + p)/4, 1 + k, Tanh[x]^2]*(Tanh[x]^2)
^k))/((-1)^k*(Sech[x]^2)^(1/4))}}
Maple raw input
dsolve(4*diff(diff(y(x),x),x)*sinh(x)^2+4*diff(y(x),x)*cosh(x)*sinh(x)-(4*k^2-(-p^2+1)*sinh(x)^2)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = sinh(x)^k*(sinh(2*x)*hypergeom([3/4-1/4*p+1/2*k, 3/4+1/4*p+1/2*k],[3/2],1
/2*cosh(2*x)+1/2)*_C1+hypergeom([-1/4*p+1/4+1/2*k, 1/4*p+1/4+1/2*k],[1/2],1/2*co
sh(2*x)+1/2)*(-2+2*cosh(2*x))^(1/2)*_C2)/(-1+cosh(2*x))^(1/2)