4.36.20 y(x)(4k2(1p2)sinh2(x))+4sinh2(x)y(x)+4sinh(x)cosh(x)y(x)=0

ODE
y(x)(4k2(1p2)sinh2(x))+4sinh2(x)y(x)+4sinh(x)cosh(x)y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 1.51321 (sec), leaf count = 123

{{y(x)(1)ktanh(x)tanh2(x)12(k1)(sech2(x))p+24(c1(1)ktanh2(x)k2F1(14(2k+p+1),14(2k+p+3);k+1;tanh2(x))+c22F1(14(2k+p+1),14(2k+p+3);1k;tanh2(x)))sech2(x)4}}

Maple
cpu = 0.294 (sec), leaf count = 92

{y(x)=(sinh(x))k(sinh(2x)2F1(34p4+k2,34+p4+k2;32;cosh(2x)2+12)_C1+2F1(p4+14+k2,p4+14+k2;12;cosh(2x)2+12)2+2cosh(2x)_C2)11+cosh(2x)} Mathematica raw input

DSolve[-((4*k^2 - (1 - p^2)*Sinh[x]^2)*y[x]) + 4*Cosh[x]*Sinh[x]*y'[x] + 4*Sinh[x]^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> ((-Sech[x]^2)^((2 + p)/4)*Tanh[x]*(Tanh[x]^2)^((-1 - k)/2)*(C[2]*Hyper
geometric2F1[(1 - 2*k + p)/4, (3 - 2*k + p)/4, 1 - k, Tanh[x]^2] + (-1)^k*C[1]*H
ypergeometric2F1[(1 + 2*k + p)/4, (3 + 2*k + p)/4, 1 + k, Tanh[x]^2]*(Tanh[x]^2)
^k))/((-1)^k*(Sech[x]^2)^(1/4))}}

Maple raw input

dsolve(4*diff(diff(y(x),x),x)*sinh(x)^2+4*diff(y(x),x)*cosh(x)*sinh(x)-(4*k^2-(-p^2+1)*sinh(x)^2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = sinh(x)^k*(sinh(2*x)*hypergeom([3/4-1/4*p+1/2*k, 3/4+1/4*p+1/2*k],[3/2],1
/2*cosh(2*x)+1/2)*_C1+hypergeom([-1/4*p+1/4+1/2*k, 1/4*p+1/4+1/2*k],[1/2],1/2*co
sh(2*x)+1/2)*(-2+2*cosh(2*x))^(1/2)*_C2)/(-1+cosh(2*x))^(1/2)