[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 1.51321 (sec), leaf count = 123
Maple ✓
cpu = 0.294 (sec), leaf count = 92
DSolve[-((4*k^2 - (1 - p^2)*Sinh[x]^2)*y[x]) + 4*Cosh[x]*Sinh[x]*y'[x] + 4*Sinh[x]^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> ((-Sech[x]^2)^((2 + p)/4)*Tanh[x]*(Tanh[x]^2)^((-1 - k)/2)*(C[2]*Hyper
geometric2F1[(1 - 2*k + p)/4, (3 - 2*k + p)/4, 1 - k, Tanh[x]^2] + (-1)^k*C[1]*H
ypergeometric2F1[(1 + 2*k + p)/4, (3 + 2*k + p)/4, 1 + k, Tanh[x]^2]*(Tanh[x]^2)
^k))/((-1)^k*(Sech[x]^2)^(1/4))}}
Maple raw input
dsolve(4*diff(diff(y(x),x),x)*sinh(x)^2+4*diff(y(x),x)*cosh(x)*sinh(x)-(4*k^2-(-p^2+1)*sinh(x)^2)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = sinh(x)^k*(sinh(2*x)*hypergeom([3/4-1/4*p+1/2*k, 3/4+1/4*p+1/2*k],[3/2],1
/2*cosh(2*x)+1/2)*_C1+hypergeom([-1/4*p+1/4+1/2*k, 1/4*p+1/4+1/2*k],[1/2],1/2*co
sh(2*x)+1/2)*(-2+2*cosh(2*x))^(1/2)*_C2)/(-1+cosh(2*x))^(1/2)