ODE
\[ y''(x)=a y(x) \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00753055 (sec), leaf count = 31
\[\left \{\left \{y(x)\to c_1 e^{\sqrt {a} x}+c_2 e^{-\sqrt {a} x}\right \}\right \}\]
Maple ✓
cpu = 0.011 (sec), leaf count = 22
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{\sqrt {a}x}}+{\it \_C2}\,{{\rm e}^{-\sqrt {a}x}} \right \} \] Mathematica raw input
DSolve[y''[x] == a*y[x],y[x],x]
Mathematica raw output
{{y[x] -> E^(Sqrt[a]*x)*C[1] + C[2]/E^(Sqrt[a]*x)}}
Maple raw input
dsolve(diff(diff(y(x),x),x) = a*y(x), y(x),'implicit')
Maple raw output
y(x) = _C1*exp(a^(1/2)*x)+_C2*exp(-a^(1/2)*x)