4.36.25 \(y''(x)=a+b x+c y(x)^2\)

ODE
\[ y''(x)=a+b x+c y(x)^2 \] ODE Classification

[NONE]

Book solution method
TO DO

Mathematica
cpu = 0.321689 (sec), leaf count = 0 , could not solve

DSolve[Derivative[2][y][x] == a + b*x + c*y[x]^2, y[x], x]

Maple
cpu = 0.217 (sec), leaf count = 0 , could not solve

dsolve(diff(diff(y(x),x),x) = a+b*x+c*y(x)^2, y(x),'implicit')

Mathematica raw input

DSolve[y''[x] == a + b*x + c*y[x]^2,y[x],x]

Mathematica raw output

DSolve[Derivative[2][y][x] == a + b*x + c*y[x]^2, y[x], x]

Maple raw input

dsolve(diff(diff(y(x),x),x) = a+b*x+c*y(x)^2, y(x),'implicit')

Maple raw output

dsolve(diff(diff(y(x),x),x) = a+b*x+c*y(x)^2, y(x),'implicit')