4.36.43 y(x)=y(x)(f(x)2f(x)2)+(3f(x)y(x))y(x)+f(x)y(x)2+y(x)3

ODE
y(x)=y(x)(f(x)2f(x)2)+(3f(x)y(x))y(x)+f(x)y(x)2+y(x)3 ODE Classification

(ODEtools/info) missing specification of intermediate function

Book solution method
TO DO

Mathematica
cpu = 0.455828 (sec), leaf count = 0 , could not solve

DSolve[Derivative[2][y][x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + Derivative[1][f][x]) + (3*f[x] - y[x])*Derivative[1][y][x], y[x], x]

Maple
cpu = 0.783 (sec), leaf count = 442

{ef(x)dxdxy(x)ef(x)dx12_f62_C1(_f2(i31)(_f6_C1)1(_f6_C1)2(1+_C1_f6+_C1)3+(_f6_C1)2(1+_C1_f6+_C1)3(i3+1))d_f_C2=0,ef(x)dxdxy(x)ef(x)dx12_f62_C1(_f2(i3+1)(_f6_C1)1(_f6_C1)2(1+_C1_f6+_C1)3+(i3+1)(_f6_C1)2(1+_C1_f6+_C1)3)d_f_C2=0,ef(x)dxdxy(x)ef(x)dx1_f6+_C1(_f6_C1)2(1+_C1_f6+_C1)3_f21(_f6_C1)2(1+_C1_f6+_C1)3d_f_C2=0,y(x)=0,y(x)=12ef(x)dx(ef(x)dxdx+_C3)(15+4ef(x)dxef(x)dx),y(x)=12ef(x)dx(ef(x)dxdx+_C3)(1+5+4ef(x)dxef(x)dx)} Mathematica raw input

DSolve[y''[x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + f'[x]) + (3*f[x] - y[x])*y'[x],y[x],x]

Mathematica raw output

DSolve[Derivative[2][y][x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + Derivativ
e[1][f][x]) + (3*f[x] - y[x])*Derivative[1][y][x], y[x], x]

Maple raw input

dsolve(diff(diff(y(x),x),x) = (3*f(x)-y(x))*diff(y(x),x)+(diff(f(x),x)-2*f(x)^2)*y(x)+f(x)*y(x)^2+y(x)^3, y(x),'implicit')

Maple raw output

y(x) = 0, y(x) = 1/2*(-1-(5+4*exp(Int(f(x),x))*exp(-Int(f(x),x)))^(1/2))/exp(-In
t(f(x),x))/(Int(exp(Int(f(x),x)),x)+_C3), y(x) = 1/2*(-1+(5+4*exp(Int(f(x),x))*e
xp(-Int(f(x),x)))^(1/2))/exp(-Int(f(x),x))/(Int(exp(Int(f(x),x)),x)+_C3), Int(ex
p(Int(f(x),x)),x)-Intat(1/(-_f^6+_C1)*((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2))
)^(1/3)-_f^2/((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3),_f = y(x)*exp(-In
t(f(x),x)))-_C2 = 0, Int(exp(Int(f(x),x)),x)-Intat((-_f^2*(I*3^(1/2)-1)*(_f^6-_C
1)/((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3)+((_f^6-_C1)^2*(-1+(_C1/(-_f
^6+_C1))^(1/2)))^(1/3)*(I*3^(1/2)+1))/(2*_f^6-2*_C1),_f = y(x)*exp(-Int(f(x),x))
)-_C2 = 0, Int(exp(Int(f(x),x)),x)-Intat((_f^2*(I*3^(1/2)+1)*(_f^6-_C1)/((_f^6-_
C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3)+(-I*3^(1/2)+1)*((_f^6-_C1)^2*(-1+(_C1/
(-_f^6+_C1))^(1/2)))^(1/3))/(2*_f^6-2*_C1),_f = y(x)*exp(-Int(f(x),x)))-_C2 = 0