(ODEtools/info) missing specification of intermediate function
Book solution method
TO DO
Mathematica ✗
cpu = 0.455828 (sec), leaf count = 0 , could not solve
DSolve[Derivative[2][y][x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + Derivative[1][f][x]) + (3*f[x] - y[x])*Derivative[1][y][x], y[x], x]
Maple ✓
cpu = 0.783 (sec), leaf count = 442
DSolve[y''[x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + f'[x]) + (3*f[x] - y[x])*y'[x],y[x],x]
Mathematica raw output
DSolve[Derivative[2][y][x] == f[x]*y[x]^2 + y[x]^3 + y[x]*(-2*f[x]^2 + Derivativ
e[1][f][x]) + (3*f[x] - y[x])*Derivative[1][y][x], y[x], x]
Maple raw input
dsolve(diff(diff(y(x),x),x) = (3*f(x)-y(x))*diff(y(x),x)+(diff(f(x),x)-2*f(x)^2)*y(x)+f(x)*y(x)^2+y(x)^3, y(x),'implicit')
Maple raw output
y(x) = 0, y(x) = 1/2*(-1-(5+4*exp(Int(f(x),x))*exp(-Int(f(x),x)))^(1/2))/exp(-In
t(f(x),x))/(Int(exp(Int(f(x),x)),x)+_C3), y(x) = 1/2*(-1+(5+4*exp(Int(f(x),x))*e
xp(-Int(f(x),x)))^(1/2))/exp(-Int(f(x),x))/(Int(exp(Int(f(x),x)),x)+_C3), Int(ex
p(Int(f(x),x)),x)-Intat(1/(-_f^6+_C1)*((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2))
)^(1/3)-_f^2/((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3),_f = y(x)*exp(-In
t(f(x),x)))-_C2 = 0, Int(exp(Int(f(x),x)),x)-Intat((-_f^2*(I*3^(1/2)-1)*(_f^6-_C
1)/((_f^6-_C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3)+((_f^6-_C1)^2*(-1+(_C1/(-_f
^6+_C1))^(1/2)))^(1/3)*(I*3^(1/2)+1))/(2*_f^6-2*_C1),_f = y(x)*exp(-Int(f(x),x))
)-_C2 = 0, Int(exp(Int(f(x),x)),x)-Intat((_f^2*(I*3^(1/2)+1)*(_f^6-_C1)/((_f^6-_
C1)^2*(-1+(_C1/(-_f^6+_C1))^(1/2)))^(1/3)+(-I*3^(1/2)+1)*((_f^6-_C1)^2*(-1+(_C1/
(-_f^6+_C1))^(1/2)))^(1/3))/(2*_f^6-2*_C1),_f = y(x)*exp(-Int(f(x),x)))-_C2 = 0