ODE
\[ y''(x)=(\text {f1}(x)-2 y(x)) y'(x)+\text {f2}(x) y(x)^2+\text {f3}(x) \] ODE Classification
[NONE]
Book solution method
TO DO
Mathematica ✗
cpu = 0.349268 (sec), leaf count = 0 , could not solve
DSolve[Derivative[2][y][x] == f3[x] + f2[x]*y[x]^2 + (f1[x] - 2*y[x])*Derivative[1][y][x], y[x], x]
Maple ✗
cpu = 0.327 (sec), leaf count = 0 , could not solve
dsolve(diff(diff(y(x),x),x) = (f1(x)-2*y(x))*diff(y(x),x)+f2(x)*y(x)^2+f3(x), y(x),'implicit')
Mathematica raw input
DSolve[y''[x] == f3[x] + f2[x]*y[x]^2 + (f1[x] - 2*y[x])*y'[x],y[x],x]
Mathematica raw output
DSolve[Derivative[2][y][x] == f3[x] + f2[x]*y[x]^2 + (f1[x] - 2*y[x])*Derivative
[1][y][x], y[x], x]
Maple raw input
dsolve(diff(diff(y(x),x),x) = (f1(x)-2*y(x))*diff(y(x),x)+f2(x)*y(x)^2+f3(x), y(x),'implicit')
Maple raw output
dsolve(diff(diff(y(x),x),x) = (f1(x)-2*y(x))*diff(y(x),x)+f2(x)*y(x)^2+f3(x), y(
x),'implicit')