4.37.3 y(x)=a(2y(x)y(x)+1)

ODE
y(x)=a(2y(x)y(x)+1) ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.276474 (sec), leaf count = 102

{{y(x)a(c2Ai(a(c1ax)(a2)2/3)+Bi(a(c1ax)(a2)2/3))(a2)2/3(c2Ai(a(c1ax)(a2)2/3)+Bi(a(c1ax)(a2)2/3))}}

Maple
cpu = 0.189 (sec), leaf count = 58

{y(x)(_a2a+RootOf(a3Bi(_Z)_C1_a+Ai(_Z)a3_a+Bi(1)(_Z)_C1+Ai(1)(_Z))a3)1d_ax_C2=0} Mathematica raw input

DSolve[y''[x] == a*(1 + 2*y[x]*y'[x]),y[x],x]

Mathematica raw output

{{y[x] -> (a*(AiryBiPrime[(a*(-(a*x) + C[1]))/(-a^2)^(2/3)] + AiryAiPrime[(a*(-(
a*x) + C[1]))/(-a^2)^(2/3)]*C[2]))/((-a^2)^(2/3)*(AiryBi[(a*(-(a*x) + C[1]))/(-a
^2)^(2/3)] + AiryAi[(a*(-(a*x) + C[1]))/(-a^2)^(2/3)]*C[2]))}}

Maple raw input

dsolve(diff(diff(y(x),x),x) = a*(1+2*y(x)*diff(y(x),x)), y(x),'implicit')

Maple raw output

Intat(1/(_a^2*a+RootOf((-a)^(1/3)*AiryBi(_Z)*_C1*_a+AiryAi(_Z)*(-a)^(1/3)*_a+Air
yBi(1,_Z)*_C1+AiryAi(1,_Z))*(-a)^(1/3)),_a = y(x))-x-_C2 = 0