ODE
\[ a y'(x)^2+b y(x)+y''(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✗
cpu = 101.668 (sec), leaf count = 0 , could not solve
DSolve[b*y[x] + a*Derivative[1][y][x]^2 + Derivative[2][y][x] == 0, y[x], x]
Maple ✓
cpu = 0.168 (sec), leaf count = 79
\[ \left \{ \int ^{y \left ( x \right ) }\!-2\,{\frac {a}{\sqrt {4\,{{\rm e}^{-2\,{\it \_a}\,a}}{\it \_C1}\,{a}^{2}-4\,b{\it \_a}\,a+2\,b}}}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!2\,{\frac {a}{\sqrt {4\,{{\rm e}^{-2\,{\it \_a}\,a}}{\it \_C1}\,{a}^{2}-4\,b{\it \_a}\,a+2\,b}}}{d{\it \_a}}-x-{\it \_C2}=0 \right \} \] Mathematica raw input
DSolve[b*y[x] + a*y'[x]^2 + y''[x] == 0,y[x],x]
Mathematica raw output
DSolve[b*y[x] + a*Derivative[1][y][x]^2 + Derivative[2][y][x] == 0, y[x], x]
Maple raw input
dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)^2+b*y(x) = 0, y(x),'implicit')
Maple raw output
Intat(-2/(4*exp(-2*_a*a)*_C1*a^2-4*b*_a*a+2*b)^(1/2)*a,_a = y(x))-x-_C2 = 0, Int
at(2/(4*exp(-2*_a*a)*_C1*a^2-4*b*_a*a+2*b)^(1/2)*a,_a = y(x))-x-_C2 = 0